Ejection Seat Quick-Release Fitting: Quantitative Fractography and Estimation of Local Toughness Using the Topography of the Fracture Surface

Author:

Wolf K.1

Affiliation:

1. Bundeswehr Research Institute for Materials, Explosives, Fuels, and Lubricants (WIWEB)

Abstract

Abstract After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic concepts. As the crack propagated, striations were created on the fracture surface as a result of service-induced load changes. The size of the striations were measured to estimate crack propagation rate. Remaining lifetime estimates were also made. The dimensions of plastically stretched zones found at the tips of the cracks were evaluated using electron micrograph stereo image pairs to characterize local fracture toughness. To complete the failure analysis, nondestructive evaluation, metallographic examination, and chemical investigations were carried out. No secondary cracks could be found. Most of the broken parts showed that the microstructure, the hardness, and the chemical composition of the Al-alloy were within the specification, but some of the cracked parts were manufactured using a different material than that specified.

Publisher

ASM International

Reference9 articles.

1. “Some Results Derived from the Microsoft Examination of Crack Surfaces,”;Forsyth;Aircr. Eng.,1960

2. “Comparison of Various Methods for Reducing Measurements from Stereo-Pair Scanning Electron Micrographs to ‘Real 3-D Data’,”;Howell,1972

3. “Elastic-Plastic Fracture,”;Landes,1977

4. “Abschätzung der Rißzähigkeit eines duktilen Werkstoffs aus der Gestalt der Bruchfläche,”;Kolednik;Metallkunde,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3