Affiliation:
1. Crucible Materials Corporation, Crucible Research Center
Abstract
Abstract
The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because of their high carbon, nitrogen, or alloy contents. For high-speed tool steels, a number of important end-user properties have been improved by powder processing; machinability, grindability, dimensional control during heat treatment, and cutting performance under difficult conditions where high edge toughness is essential. Several of these advantages also apply to P/M cold- and hot-work tool steels, which, compared to conventional tool steels, offer better toughness and ductility for cold-work tooling, better thermal fatigue life, and greater toughness for hot-work tooling.
Reference30 articles.
1. “Advances in the Development of Wear-Resistance High-Vanadium Tool Steels for Both Tooling and Non-Tooling Applications,”;Dixon,1982
2. HIP Tool Materials;Bayer;Powder Metall.,1984
3. PM Hot Work Tool Steels;Seilstorfer;Metal,1988
4. Cutting Tools From P/M High Speed Steels;Arnhold;Powder Metall. Int.,1989
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献