Abstract
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献