Fracture Toughness of HVOF Sprayed WC-Co Coatings

Author:

De Palo S.1,Mohanty M.2,Marc-Charles H.2,Dorfman M.2

Affiliation:

1. SUNY at Stony Brook, Stony Brook, New York, USA

2. Sulzer Metco Inc. (US), Westbury, New York, USA

Abstract

Abstract Tungsten carbide-cobalt coatings are extensively used to protect surfaces from wear in many types of applications, such as compressor piston rods, pump plungers, shaft sleeves on centrifugal pumps and fans, and midspans of compressor blades in gas turbines. The wear behavior in any application is strongly influenced by the basic physical and mechanical properties of such coatings. Fracture toughness as a mechanical property indicates the resistance to fracture in the presence of a sharp crack, and thus provides a measure of the intrinsic strength of the cemented carbides coatings. In this study, Vickers indentation tests have been used to quantify the in-plane fracture behavior of various WC-based coatings deposited by the High Velocity Oxy-Fuel (HVOF) spray process. The indentation cracks are analyzed in terms of standardized relations that utilize radial-median crack geometries. It is shown that the fracture properties of HVOF WC-Co coatings are anisotropic, and depend strongly on the microstructure and composition of the coatings. The crack propagation is determined by the porosity, binder mean free path, and the shape, size, and distribution of the reinforcing carbide particles. The erosion resistances of the coatings have also been discussed as a function of the fracture properties and mechanisms. It is shown, in this study, that the Vickers indentation method is a useful and convenient technique for determining the in-plane fracture toughness of HVOF sprayed WC-based coatings.

Publisher

ASM International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components;Journal of Thermal Spray Technology;2010-04-30

2. High-velocity oxy-fuel thermally sprayed CoNiCrAlY coatings on Ti-6Al-4V alloy: High cycle fatigue properties of coating;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2007-04-01

3. High-velocity oxy-fuel coating of AMDRY 9954 on to Ti-6Al-4V alloy: Fracture toughness measurement;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2007-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3