Characterisation of Inconel 625 Coatings Deposited by Cold Spray

Author:

Pontarollo A.1,Vezzù S.1,Trentin A.1,Rech S.1,Guidolin M.1,Cafissi A.1,Peretti C.1,Molinas B.1

Affiliation:

1. Venice/I

Abstract

Abstract The high strength nickel alloys, and in particular Inconel type alloys, are extensively used in several applications, such as aeronautics and petroleum industry, thanks to the combination of their high mechanical properties and their thermal and chemical resistance. In particular Inconel 625 is already used in oil pipelines and pipelines of large thermal plants, and the possibility to replace high cost bulk Inconel parts with Inconel coated steel parts is of great interest. On this context the first topic to allow the use of coated parts instead of bulk Inconel is the capability to provide high corrosion and thermal resistance. The aim of this study is to investigate the capability of Coldspray in the deposition of high strength materials, such as hard nickel alloys, for corrosion protection, and to compare the corrosion behaviour of Coldspray coatings with commercial HVOF deposited coatings. Inconel 625 coatings were deposited by using CGT Kinetic3000 deposition system with nitrogen as carrier gas on AISI316L flat substrates. The coating thickness ranges between 0.3 and 1.0 mm. Different feedstock materials were used and the effect of powder size distribution on the growth capability, as well on coating microstructure and porosity, were evaluated. The corrosion behaviour of Coldspray coatings were studied by electrochemical potentiondynamic analysis and compared with the behaviour of commercially available coatings deposited by HVOF that could be considered as a high-quality benchmark. In particular, the effects of the different coating microstructures due to the different deposition processes were related with the corrosion resistance. Further development and key features are finally outlined in order to candidate the Coldspray as promising technology for the deposition of high-strength nickel alloys.

Publisher

DVS Media GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3