Wear Behaviour of Conventional and Nanostructured Thin Films of Titanium Aluminium Nitride

Author:

Grewal Jasmaninder Singh1,Sidhu Buta Singh2,Prakash Satya3

Affiliation:

1. Guru Nanak Dev Engineering College , Ludhiana

2. Dean Academics , PTU, Kapurthala

3. IIT Roorkee , Roorkee, India

Abstract

Abstract Titanium aluminium based nitride (Ti, Al)N coatings possess excellent tribological behaviour with respect to metal cutting and polymer forming contacts. In the present work TiAlN coatings were deposited by plasma spray process. Three coatings of TiAlN were deposited on AISI-347 grade boiler steel substrate out of which two were thin nano coatings deposited at different temperatures of 500°C and 200°C and one conventional coating was deposited by plasma spraying. The as sprayed coatings were characterized with relative to coating thickness, microhardness, porosity and microstructure. The optical microscopy (OM), the XRD analysis and field mission scanning electron microscope (FESEM with EDAX attachment) techniques have been used to identify various phases formed after coating deposited on the surface of the substrate. Subsequently the sliding wear behaviour of uncoated, PVD sprayed nanostructured thin TiAlN coatings deposited at 500°C and 200°C and plasma sprayed conventional coated AISI-347 grade boiler steel were investigated according to ASTM standard G99-03 using pin on disk wear test rig. Cumulative wear volume loss and coefficient of friction, μ were calculated for the coated as well as uncoated specimens for 10, 15 and 20 N normal loads at a constant sliding velocity of 1 m/sec. The worn out samples were analysed with SEM/EDAX. Wear rates in terms of volumetric loss (mm³/g) for uncoated and coated alloys were compared. The nanostructured TiAlN coatings deposited at 500°C and 200°C has shown minimum wear rate as compared to conventional TiAlN coating and uncoated AISI-347 grade boiler steel. Nanostructured TiAlN coatings were found to be successful in retaining surface contact with the substrate after the wear tests.

Publisher

ASM International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3