Automated Via Detection for PCB Reverse Engineering

Author:

Botero Ulbert J.1,Koblah David1,Capecci Daniel E.1,Ganji Fatemeh1,Asadizanjani Navid1,Woodard Damon L.1,Forte Domenic1

Affiliation:

1. Florida Institute for Cybersecurity Research, University of Florida, Gainesville, FL, USA

Abstract

Abstract Reverse engineering (RE) is the only foolproof method of establishing trust and assurance in hardware. This is especially important in today's climate, where new threats are arising daily. A Printed Circuit Board (PCB) serves at the heart of virtually all electronic systems and, for that reason, a precious target amongst attackers. Therefore, it is increasingly necessary to validate and verify these hardware boards both accurately and efficiently. When discussing PCBs, the current state-of-the-art is non-destructive RE through X-ray Computed Tomography (CT); however, it remains a predominantly manual process. Our work in this paper aims at paving the way for future developments in the automation of PCB RE by presenting automatic detection of vias, a key component to every PCB design. We provide a via detection framework that utilizes the Hough circle transform for the initial detection, and is followed by an iterative false removal process developed specifically for detecting vias. We discuss the challenges of detecting vias, our proposed solution, and lastly, evaluate our methodology not only from an accuracy perspective but the insights gained through iteratively removing false-positive circles as well. We also compare our proposed methodology to an off-the-shelf implementation with minimal adjustments of Mask R-CNN; a fast object detection algorithm that, although is not optimized for our application, is a reasonable deep learning model to measure our work against. The Mask R-CNN we utilize is a network pretrained on MS COCO followed by fine tuning/training on prepared PCB via images. Finally, we evaluate our results on two datasets, one PCB designed in house and another commercial PCB, and achieve peak results of 0.886, 0.936, 0.973, for intersection over union (IoU), Dice Coefficient, and Structural Similarity Index. These results vastly outperform our tuned implementation of Mask R-CNN.

Publisher

ASM International

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3