PERFORMANCE OF UREA/NaOH AS A GREEN SOLVENT IN DISSOLVING RECYCLED CELLULOSIC FIBER FINES RESIDUES

Author:

BAGHERI SHAKIBA, ,RAHMANINIA MEHDI,BEHROOZ RABI, ,

Abstract

Using lignocellulosic materials for producing more value-added bioproducts is an attractive mission. Fiber fines, which represent an important part of the wastes generated by paper recycling mills, have been considered in the current research. Dissolving these lignocellulosic residues in environmentally friendly and inexpensive solvents can be a great achievement. For this purpose, the performance of urea/sodium hydroxide in dissolving printing and writing pulp (RPW) fines was investigated. Although using sodium hydroxide alone had a positive effect on the dissolution of recycled printing and writing pulp (RPWP) fines, the addition of urea increased the dissolution of fines from 23% to 56%. Different levels of urea consumption had no significant effect on the dissolving process. The performance of the urea/sodium hydroxide system in dissolving fines suspensions with different concentration (1, 3 and 5%) showed that reducing the concentration leads to an increase in fines dissolution (56, 36 and 7%, respectively). The results of FTIR confirmed the presence of cellulose without any hemicelluloses and lignin in the dissolving part. The results of X-ray diffraction analysis of soluble cellulose showed that the type-I cellulose structure probably changed to type-II cellulose. No reduction in the DP of dissolved cellulose and the integrated structure of the final cellulosic film confirmed by the FE-SEM images affirmed the successful dissolution of the RPWP fines in this system.

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ozone-activated lignocellulose films blended with chitosan for edible film production;International Journal of Biological Macromolecules;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3