DEVELOPMENT OF COMBINED ORGANOSOLV-TEMPO OXIDATION TREATMENT FOR OBTAINING CELLULOSE NANOFIBRES

Author:

LIGERO PABLO, ,DE VEGA ALBERTO,GARCÍA XOAN, , ,

Abstract

The aim of this work was to study and optimize the production of nano-size cellulose fibrils (NFC) by combined performic acid treatment, totally chlorine-free (TCF) bleaching and TEMPO-oxidation prior to mechanical treatment. For this purpose, a face-centered design was developed in order to optimize the independent variables governing performic treatment. Under the optimal conditions, a kappa index of 13 was achieved, which decreased to 2.2 after bleaching treatment. These low-lignin pulps were TEMPO-oxidized under different oxidizing conditions, while monitoring cellulose yield, carboxylic acid content and the degree of polymerization. The optimized conditions produced oxidized pulp with 1.4 mmol COOH/g dried nanofibre. Finally, this oxidized cellulose was subjected to high-pressure mechanical processing in order to obtain cellulose nanofibres. From the results, it can be concluded that neither the number of homogenizer passes nor the pressure affected to diameter of fibrils.

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3