Author:
RAGHAV GURUMOORTHY R., ,ASHOK KUMAR RAJENDRAN,NAGARAJAN JAWAHARLAL K.,VIGNESH CHANDRAN,SAHAYARAJ AROKIASAMY FELIX,SYAFRI EDI, , , , ,
Abstract
Organic filler-reinforced thermosetting polymer composites, when contrasted with ferrous, nonferrous, and their respective alloys, offer a broad spectrum of applications. Extensive research has been dedicated to enhancing the intrinsic mechanical and thermal properties of composite materials, with a particular focus on environmentally friendly, recyclable, and biodegradable reinforcements. As a result, the present study involved the preparation of composites by amalgamating cellulose nanofibers (CNFs) sourced from agricultural waste with epoxy to augment the characteristics of polymer composites. The CNFs-reinforced epoxy composites were fabricated via the compression molding process, incorporating filler loadings ranging from 1% to 3% by weight. A comprehensive experimental investigation was conducted on the mechanical properties (tensile, flexural, impact, and hardness) and thermal properties (heat deflection temperature) of these composites. Additionally, scanning electron microscopy was employed to examine the surface characteristics and fractured surfaces of the composites. The results revealed that, among the produced composites, those containing 2 wt% CNFs in the epoxy exhibited superior mechanical properties, outstanding tensile and flexural strengths of 42.8 ± 2 MPa and 106.1 ± 1.6 MPa, respectively, along with an impact strength of 13 ± 2.5 KJ/m² and a hardness rating of 21.2. Notably, these 2 wt% CNFs-reinforced epoxy composites exhibited a 7% increase in the heat deflection temperature, compared to the pristine epoxy resin.
Publisher
Institutul de Chimie Macromoleculara Petru Poni
Subject
Materials Chemistry,Organic Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献