SEPARATION OF HEMICELLULOSES FROM AN INDUSTRIAL STREAM BY NANOFILTRATION AND ULTRAFILTRATION PROCESSES

Author:

SINGH SAURABH C., ,KHARE RUPESH A.,MURTHY Z. V. P., ,

Abstract

The performance of nanofiltration (NF) and ultrafiltration (UF) membranes was studied for separating hemicelluloses from a highly alkaline industrial stream, containing 17-18 wt% sodium hydroxide, resulting from the viscose process. Initially, screening experiments were performed to select suitable membranes, which were then investigated on a pilot scale spiral module. Screening experiments showed that the UF membrane, with a nominal molecular weight cut-off (MWCO) value of 3 kDa, and the NF one, with a nominal MWCO value of 0.5 kDa, showed a similar range of filtration performance and a flux of 4.2 L/m2.h. Further, a retention efficiency of 50% was observed for the 5 kDa and the 10 kDa membranes, indicating absence of any significant proportion of hemicelluloses in this range of molecular weights. The effects of process conditions were studied to understand their correlation with membrane performance with respect to hemicelluloses retention and permeate flux. UF membranes were found to be more prone to performance deterioration over time and with the number of cycles of usage during the pilot scale study, whereas the NF membrane showed consistent performance. It was seen that feed dilution can improve the membrane performance with respect to sodium hydroxide recovery. Significant reduction in feed viscosity with dilution resulted in a 50% increase in flux after normalizing for concentration.

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3