THERMAL DECOMPOSITION OF MONO- AND DIETHANOLAMINEBORATE MODIFIED WOOD IN AIR ATMOSPHERE

Author:

STEPINA IRINA, ,ZHEGLOVA YULIAORCID,

Abstract

"For cellulosic materials used in various branches of the economy, the issue of increasing thermal stability is still relevant today. Especially acute is the problem of fire resistance for wood materials used in building structures. In our work, we investigated the effect of mono- and diethanolamine borates on the thermal decomposition of wood in an air atmosphere. It has been previously found that mono- and diethanolaminoborates, when used as surface modifiers, provide 100% biostability to plant raw materials. In this regard, the purpose of the study was to identify the flame retardant effect of the described modifiers. In the course of the study, it was found that the developed compositions, the main components of which are boron-nitrogen compounds, effectively reduce the combustibility of wood materials, suppress smoldering, and reduce the burning rate of wood. Since it is the smoldering of wood after the liquidation of the fire that is the main cause of structural collapse, which prevents evacuation during the fire, the use of the developed compositions for fire protection of wooden structures is extremely appropriate. A regression model of the dependence of activation energy on conversion has been obtained and substantiated on the basis of correlation and regression analysis. The presented semi-logarithmic model can be further applied to predict the dependence of the activation energy value of the thermal decomposition process of modified wood on the degree of conversion."

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3