Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201600, China
2. Shandong Lulian New Material Co., Ltd., Shandong 255000, China
Abstract
In order to overcome the disadvantage of Lyocell fiber flammability, two types of flame-retardant finishing liquids, 2-carboxyethyl phenylphosphic acid (CEPPA) and N-hydroxymethyl-3-dimethoxyphosphoacyl propanamide (MDPA), were used in this study to treat Lyocell fiber in two different states: never-dried and dry. The results showed that CEPPA and MDPA can react with the hydroxyl groups of the cellulose and graft onto the Lyocell fiber under appropriate conditions, resulting in increased flame-retardant performance of the fiber, a slight reduction in crystallinity, and a significant decline in mechanical properties. Compared with the dry fiber, the P content and LOI of the fiber obtained by treating the as-spun never-dried Lyocell fiber rose significantly: the P content was higher by 38.9% (for CEPPA) and 20.5% (for MDPA), respectively, while the LOI increased by 6.0% (for CPPA) and 4.0% (for MDPA), respectively, which means that the fiber had better flame-retardant performance. Although the breaking strength of the fiber decreased, it still met the requirements for textiles. In addition, direct flame-retardant treatment of never-dried wet fiber can reduce energy consumption by avoiding repeated drying. Furthermore, the results of this study also have guiding significance for other post-processing procedures for Lyocell fibers, such as dyeing, catalyst infiltration during carbon fiber preparation etc
Publisher
Institutul de Chimie Macromoleculara Petru Poni
Subject
Materials Chemistry,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献