APPLICATION OF LYOCELL FIBER STRUCTURE FORMATION MECHANISM IN FLAME-RETARDANT MODIFICATION OF LYOCELL FIBER

Author:

YANG GESHENG1,MENG YONGWEI2,ZHANG HUIHUI1,SHAO HUILI1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201600, China

2. Shandong Lulian New Material Co., Ltd., Shandong 255000, China

Abstract

In order to overcome the disadvantage of Lyocell fiber flammability, two types of flame-retardant finishing liquids, 2-carboxyethyl phenylphosphic acid (CEPPA) and N-hydroxymethyl-3-dimethoxyphosphoacyl propanamide (MDPA), were used in this study to treat Lyocell fiber in two different states: never-dried and dry. The results showed that CEPPA and MDPA can react with the hydroxyl groups of the cellulose and graft onto the Lyocell fiber under appropriate conditions, resulting in increased flame-retardant performance of the fiber, a slight reduction in crystallinity, and a significant decline in mechanical properties. Compared with the dry fiber, the P content and LOI of the fiber obtained by treating the as-spun never-dried Lyocell fiber rose significantly: the P content was higher by 38.9% (for CEPPA) and 20.5% (for MDPA), respectively, while the LOI increased by 6.0% (for CPPA) and 4.0% (for MDPA), respectively, which means that the fiber had better flame-retardant performance. Although the breaking strength of the fiber decreased, it still met the requirements for textiles. In addition, direct flame-retardant treatment of never-dried wet fiber can reduce energy consumption by avoiding repeated drying. Furthermore, the results of this study also have guiding significance for other post-processing procedures for Lyocell fibers, such as dyeing, catalyst infiltration during carbon fiber preparation etc

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3