FUNCTIONALIZATION OF CELLULOSE AND CHITOSAN IN IONIC LIQUIDS

Author:

STEFANESCU CRISTINA1,DALY WILLIAM H.1,NEGULESCU IOAN I.1

Affiliation:

1. Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

Chemistry of cellulose in ionic liquids has been briefly reviewed and, accordingly, the phthalation of chitosan in these ionic solvents has been investigated. Chitosan (K) has been reacted at 100 °C for 4 hours with phthalic anhydride (PA) in ionic liquids 1-butyl-3-methylimidazolium acetate (BMIMAc) and 1-butyl-3-methylimidazolium chloride (BMIMCl) in the presence of bases, pyridine and 1,4-diazobicyclo[2.2.2] octane (DABCO), or the phthalation has been catalyzed by N-bromosuccinimide (NBS). Depending on the nature of the reaction components, the samples were prepared with molar ratios of PA to anhydroglucose unit (PA:K) from 3:1 to 10:1, including molar ratios of bases or catalyst to chitosan, ranging also from 3:1 to 10:1. All the reaction products were soluble in dimethyl sulfoxide and dimethylformamide. Both functional groups of chitosan units, -OH and -NH2 , reacted, resulting in FTIR confirmed products containing esters, amide, and imide functional groups. Heating the isolated phthalated chitosan products to 200 °C led to cyclization with the formation of imide groups and elimination of water. When bases controlled the reactions, the highest degrees of substitution of DABCO product (DS = 0.80) was slightly higher than the highest DC of the reaction products obtained in the presence of pyridine (DS = 0.77). However, the presence of the Nbromosuccinimide catalyst in the system led to an increase of the degree of substitution of the functional groups of chitosan (DS = 1.75), compared with that listed above for the products resulted when the reactions were carried out in the presence of bases. The thermal stability of the chitosan derivatives obtained in the presence of a base depended primarily upon the nature of the counter ion of the ionic liquid. When the reaction was conducted in the acetate ionic liquid BMIMAc, the phthalated chitosan exhibited a lower thermal stability than that of chitosan, while when the chloride ionic liquid BMIMCl was used as solvent, the thermal stability of the phthalated chitosan increased, indicating an interference of the ionic solvents in the mechanisms of reactions. Nevertheless, the thermal behavior of the phthalated products obtained in reactions catalyzed by NBS may be correlated with the increasing degrees of substitution achieved with increased catalyst concentrations: a higher DS resulted in a higher weight loss at higher temperatures.

Publisher

Institutul de Chimie Macromoleculara Petru Poni

Subject

Materials Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3