OPTIMIZATION OF THE EXTRACTION AND PREPARATION OF CELLULOSE MICROFIBERS FROM RICE HUSK USING A FULL FACTORIAL EXPERIMENT

Author:

,HINCAPIÉ ROJAS DANIEL FERNANDO,ROMERO RODRIGUEZ TAYRON RONNIE, ,ORTEGA SOLARTE DIANA FERNANDA, ,MOSCOSO LONDOÑO OSCAR, ,LONDOÑO CALDERÓN CESAR LEANDRO, ,GIRALDO ASTRID LORENAORCID,

Abstract

Cellulose is one of the most abundant biopolymers on Earth and is of most significant interest due to its properties and uses. Cellulose can be obtained from agro-industrial residues, such as rice husk, whose cellulose content is approximately 30%. In this study, cellulose microfibers were extracted from rice husks. Fibers were obtained by submitting the biomass to alkali (NaOH) and bleaching treatments. These treatments have already been reported in the literature; however, variables such as the concentration of reagents, the time, and the temperature of the chemical treatment have yet to be optimized. A factorial design of experiments with 3 factors and 2 levels for each factor was proposed to optimize the chemical processes. It was determined through the analysis of variance (ANOVA) that the factors evaluated significantly influenced the elimination of non-cellulosic compounds, and that the chemical treatment was more efficient when the factors took high level values. Ultraviolet-visible spectroscopy (UV-Vis) analysis showed the successful removal of undesired components during the alkaline treatment. The effect of the treatments on the morphology upon removing hemicelluloses, lignin, and inorganic material was evaluated through Scanning Electron Microscopy (SEM). The increase in the thermal stability in the alkali-treated rice husk and in cellulose microfibers, compared to the raw rice husk, was established by thermogravimetric analysis (TGA). X-ray diffraction (XRD) indicated that the treatments increased the percentage of crystallinity.

Publisher

Institutul de Chimie Macromoleculara Petru Poni

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3