Effect of solutionizing heat treatment on the structure and mechanical properties of silicon bronze (Cu-10wt%Si-2wt%Ni)

Author:

Ukamaka E Ezeobi,Chidume N Nwambu,Eugene E Nnuka,Bala M Bosan

Abstract

The effect of solutionizing temperature, soaking time, and quenching media on the structure and mechanical properties of silicon bronze (Cu-10wt%Si-2wt%Ni) has been examined. The samples were produced using the sand casting technique, machined to the required dimensions, and solutionized at temperatures of 700 oC, 800 oC, and 900 oC for 0.5, 1.5, 2.5, and 3.5 hrs and quenched in brine and oil respectively. The prepared as-cast and solution heat-treated samples were subjected to mechanical tests (hardness, and impact strength tests) as well as microstructural analysis. The results of the microstructural analysis revealed the presence of coarse grains and coarse sparse distribution of Ni2Si precipitate in the as-cast sample while the surface morphology of the heat-treated samples consisted of fine grains of intermetallic compounds evenly dispersed in the copper matrix. It was also observed that the microstructures of samples solutionized at lower temperatures (700 oC) revealed finer grains with better grain distributions compared with samples solutionized at higher temperatures (800 oC and 900 oC). These microstructural changes led to the improvement of the hardness and impact strength of the alloy. The hardness value of the as-cast sample 48.5 HRB, increased to 53.7 HRB and 57.8 HRB after solid solution heat treatment at 700 oC for 3.5 h and cooled in brine and oil, respectively. It was also observed that the hardness of the brine-cooled samples increased further to 72.45 HRB after 3.5 h at 900 oC. The results obtained also showed that the solid solution heat-treated samples gave an optimum impact strength value of 214 J/m3 and 183 J/m3 from the samples solutionized at 900 oC and 800 oC for 3.5 h and 1.5 h and cooled in brine and oil respectively. This was concluded to be a result of solid solution alpha and beta phases formed which improve energy absorption in the alloy.

Publisher

Peertechz Publications Private Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3