Nanozyme catalytic mimetic effect of iron oxide nanoparticles hybrids with cellulosic matrices and its synergism with microorganisms

Author:

Leonardo ZanataORCID,Derval dos Santos Rosa

Abstract

Iron Oxide Nanoparticles (IONPs) are generally assumed to be biologically inert, presenting chemical stability and low toxicity, and they can be hybridized with cellulosic matrixes aiming for biological applications (e.g. nanozymes). Two hydrothermal coprecipitation methods were applied, aiming to produce 2 different size Iron oxide nanoclusters, using ferric chloride and ferrous chloride, as well as nitrocellulose and cellulosic residues for the hybrids. The obtained materials were tested for catalytic effect in comparison and in synergy with catalase-positive P. aeruginosa, S. aureus, and B. subtilis bacterial strains. The catalytic effect was observed for all obtained materials and microorganisms, Due to the bivalent and trivalent iron molecules distributed along IONP cubic crystalline inverse spinel structures. Michaelis-Menten constant (Km) of IONP-and hybrids was higher in synergy with S. aureus in comparison with the results obtained by the microorganism alone, for instance, the best enzymatic efficiency for O2 release from hydrogen peroxide among the tested microorganisms. However, no significant difference was observed for most of the obtained materials alone. On the other hand, IONPs may help microorganisms as mimetic catalytic enzymes, when applied in synergy whit them.

Publisher

Peertechz Publications Private Limited

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3