Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: impact on the chemical bonding with silane

Author:

A Poulon-QuintinORCID,F Rouzé l’Alzit,E Ogden,A Large,C Bertrand,M Bartala

Abstract

Recommendations to obtain the best bonding to silica-based ceramics are to prepare its surface by hydrofluoric-acid HF etching and regular application of a silane. This study investigated how the HF-etching followed by ultrasonic water bath cleaning or by an additional phosphoric acid treatment impacts the adhesion properties of a resin (G-CEM LinkForce®) with a lithium disilicate glass-ceramic (IPS Emax Press, Ivoclar Vivadent). Comparison is based on results obtained with HF etching and direct silane application. After HF-etching, a water ultrasonic bath (4 minutes), and a final air drying, the scratch test critical load increases (+ 46%) thanks to chemical bonding. Additional tests are presented including heat treatments (at 85 °C before and after silanization). If HF-etching is followed by phosphoric acid treatment and drying of silane at 85 °C, scratch test critical load increases (+ 42%) due to mechanical bonding. Similar adhesion properties are obtained with two opposite protocols.

Publisher

Peertechz Publications Private Limited

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3