Regulation of enzymes with identical subunits on the example of Transketolase

Author:

Olga N Solovjeva

Abstract

The molecule of transketolase is a dimer with structurally and functionally identical subunits. Its active sites are located in the region of intersubunit contact, which has been shown also for other thiamine enzymes. This leads to the reciprocal influence of active sites in the binding of cofactors and during catalysis. In this review, it is shown that the functional non-equivalence of the active sites of transketolase from Saccharomyces cerevisiae is initially formed upon the binding of the first cofactor, a divalent cation, not thiamine diphosphate, as previously thought. An attempt was made to find the reason for the differences between catalytic measurements and crystallographic data on the possible part-of-the-sites reactivity of the functioning of transketolase. At the same time, the difference in the amplitudes of dichroic absorption during the binding of reversibly and irreversibly splitting substrates has nothing to do with the flip-flop mechanism. It was also shown that with an increase in the concentration of substrates, a sharp decrease in activity occurs, which is explained by a switch from the simultaneous binding of the substrate in two active sites to its alternate binding both in one-substrate and two-substrate reactions. This fact could also be the reason for the rejection of the flip-flop mechanism of catalysis by transketolase. The mechanism may be similar to human transketolase, which may have clinical application.

Publisher

Peertechz Publications Private Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3