On the Bogolubov’s chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction

Author:

Yarema A PrykarpatskyORCID,Radoslaw Kycia,Anatolij K Prykarpatski

Abstract

We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in manyparticle media. Based on geometric properties of the manyparticle phase space we succeded in dual analysing of the infinite Bogolubov hierarchy of manyparticle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reducing the Bogolubov hierarchy on a suitably chosen correlation function constraint and deducing the related modified Boltzmann-Bogolubov kinetic equations on a finite set of multiparticle distribution functions.

Publisher

Peertechz Publications Private Limited

Reference43 articles.

1. 1. Akhiezer AI, Peletminsky SV (2013) Methods of statistical physics. Pergamon Press.

2. 2. Balescu R (1975) Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, New York.

3. 3. Bazarov IP, Gevorkian EV, Nikolaev PN (1989) Nonequilibrium thermodynamics and physical kinetics. Moscow University Press.

4. 4. Bogolubov NN (1960) Problems of dynamical theory in statistical physics. Geophysics Research Directorate, AF Cambridge Research Laboratories, Air Force Research Division, United States Air Force.

5. 5. Bogolubov NN (1975) Microscopic solutions of the Boltzmann-Enskog equation in kinetic theory for elastic balls. Theor Math Phys 24: 804-807. Link: https://bit.ly/3BCDowd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3