Assessing Column Stability: A Comparative Study of Machine Learning Regression Models for Shear Strength Prediction

Author:

Özyüksel Çiftçioğlu Aybike1ORCID

Affiliation:

1. MANİSA CELÂL BAYAR ÜNİVERSİTESİ

Abstract

This research presents a comprehensive investigation into the accurate estimation of shear strength in rectangular reinforced concrete columns through advanced machine learning (ML) models. The study addresses the intricate challenge posed by shear strength complexity, which is crucial for evaluating column stability and ensuring structural integrity. Building upon a substantial dataset comprising 545 experimental observations sourced from diverse literature, this research establishes a robust foundation for predictive modeling. Four distinct ML regression models, Random Forest, Decision Tree, XGBoost, and LightGBM, are meticulously evaluated for their performance. The evaluation employs established metrics, including R2, RMSE, MAE, and MAPE to quantify their predictive capabilities. The outcomes highlight the models' robustness in capturing nuanced variations in shear strength, with impressive R2 values ranging from 93.6% to 93.9%, showcasing their exceptional ability to elucidate intricate shear behaviors. Furthermore, comparative analysis indicates the slightly superior performance of the Random Forest over the Decision Tree, highlighting the efficacy of ensemble methods in this context. Extending the exploration to include XGBoost and LightGBM, the study showcases their potential as accurate shear strength predictors. The performance of the models is validated through scatter plots and error distribution plots, confirming accurate shear strength predictions across various scenarios. This research contributes significantly to the advancement of structural engineering methodologies by highlighting the potential of ML to improve the accuracy of shear strength estimation. The findings not only underscore the exceptional performance of ML models but also provide valuable insights into their comparative effectiveness, paving the way for enhanced structural assessments in columns.

Publisher

Ankara Yildirim Beyazit Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3