Long-term changes in thermal conditions on the surface of the Far-Eastern Seas and North-West Pacific and their relationship with large-scale climate processes

Author:

Khen G. V.1ORCID,Ustinova E. I.1ORCID,Sorokin Yu. D.1

Affiliation:

1. Pacific branch of VNIRO (TINRO)

Abstract

Previously published results of the study [Khen et al., 2019b] are continued. Long-term changes of the sea surface temperature (SST) in the Far-Eastern Seas and North-West Pacific (NWP) are described for 1950–2019 and their relationship with large-scale climate processes described by climatic indices (AO, Nino 3.4, PDO, ALPI, NPI, PNA, SHI, and WP) is analyzed. SST has increased in all seasons, with higher rate in winter and autumn and less significant trend in summer. A prominent shift to warmer regime occurred in the Bering Sea in 1977 that coincided with a sharp change in dynamics of PDO, ALPI, NPI, and PNA indices. Such shifts were observed in the Okhotsk Sea in 1981 and in the Japan Sea in 1990, one year after the shifts in the time-series of AO, PDO, and PNA indices. Smaller shifts to warming happened in NWP in 2008 and 2018. Pacific Decadal Oscillation is the main contributor to temperature variability in the Bering Sea in all seasons, though the contribution of ALPI and PNA variation is considerable in winter and spring. Arctic Oscillation is the most important for the Okhotsk Sea. Variations of AO, SHI and WP are significant for the SST variability in the Japan Sea. Any single climatic index does not determine the SST variability in NWP, in all seasons. The set of climatic indices can be divided into two categories: western and eastern ones, according to their contribution to SST variability in certain regions. The western group includes AO, SHI, and WP, which contribute mostly to the variations in the western regions, westward from the longitude of Kamchatka. The most important indices in the eastern group are PDO, PNA and ALPI.

Publisher

FSBSI TINRO Center

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Reference38 articles.

1. Basyuk, E.O. and Zuenko, Yu.I., Bering Sea: 2018 as the extreme low-ice and warm year, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2019, vol. 198, pp. 119–142. doi 10.26428/1606-9919-2019-198-119-142

2. Bendat, J.S. and Piersol, A.G., Analysis and Measurement Procedures, Moscow: Mir, 1989.

3. Zuenko, Yu.I., Aseeva, N.L., Glebova, S.Yu., Gostrenko, L.M., Dubinina, A.Yu., Dulepova, E.P., Zolotov, A.O., Loboda, S.V., Lysenko, A.V., Matveev, V.I., Muktepavel, L.S., Ovsyannikov, E.E., Figurkin, A.L., and Shatilina, T.A., Recent changes in the Okhotsk Sea ecosystem (2008–

4. , Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2019, vol. 197, pp. 35–61. doi 10.26428/1606-9919-2019-197-35-61

5. Il’inskii, O.K., The Okhotsk anticyclone, Tr. Dal’nevost. Nauchno-Issled. Gidrometeorol. Inst., 1959, vol. 7, pp. 10–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3