Description of regression models for predicting the dynamics of pink salmon returns in the Kamchatka region based on climate-oceanological and population-genetic data

Author:

Bugaev A. V.1ORCID,Tepnin O. B.1ORCID,Shpigalskaya N. Yu.1ORCID,Kulik V. V.2ORCID

Affiliation:

1. Kamchatka branch of VNIRO (KamchatNIRO)

2. Pacific branch of VNIRO (TINRO)

Abstract

Several regression models for predicting returns of pink salmon in the Kamchatka region are presented. The data for 1990–2023 were analyzed. Among available climatic and oceanological indices, the most suitable for using as predictors for forecasting of pink salmon returns were the Pacific Decadal Oscillation (PDO) index, Western Pacific Cyclonic Index (WP), Arctic Oscillation (AO) index, and the sea surface temperature anomaly in the North Pacific. Multi-dimensional models of the «stock–recruitment» type were built on identified statistical patterns, which allowed to estimate potential abundance of the pink salmon returns to northeastern and western Kamchatka. Besides, methods for predicting the abundance of pink salmon returns on the data of fish counting in the sea are considered, using the materials of TINRO trawl surveys conducted in the Bering and Okhotsk Seas in the fall seasons of 2012–2023. To determine the abundance of pink salmon originated from West Kamchatka, genetic identification of regional composition of juveniles in mixed trawl catches was used. All tested methods have a high level of determination, but simpler regressive models are more prospective for practical forecasting of general trend in dynamics of pink salmon stocks in the Kamchatka region due to very weak generalization ability of more complicated models.

Publisher

FSBSI TINRO Center

Reference47 articles.

1. Babayan, V.K., Bobyrev, A.E., Bulgakova, T.I., Vasiliev, D.A., Ilyin, O.I., Kovalev, Yu.A., Mikhailov, A.I., Mikheev, A.A., Petukhova, N.G., Safaraliev, I.A., Chetyrkin, A.A., and Sheremetyev, A.D., Metodicheskiye rekomendatsii po otsenke zapasov prioritetnykh vidov vodnykh biologicheskikh resursov (Guidelines for assessing stocks of priority types of aquatic biological resources), Moscow: VNIRO, 2018.

2. Birman, I.B., Morskoi period zhizni i voprosy dinamiki stada tikhookeanskikh lososei (The Marine Life History and the Issues of Dynamics of the Pacific Salmon Stock), Moscow: Agropromizdat, 1985.

3. Bugaev, A.V. and Gerlits, A.I., The characteristics of feeding migrations of hatcheryreared pacific salmon juveniles in the Sea of Okhotsk basin and adjacent Pacific waters in the autumn–winter period (regional identification, abundance, distribution of catches, biological characteristics, and mortality rate estimates), Russ. J. Mar. Biol., 2023, vol. 49, no. 7, pp. 546–568. doi:10.1134/s1063074023070039

4. Bugaev, A.V., Zikunova, O.V., Artyukhina, N.B., and Shubkin, S.V., Analytical review of the results of salmon fisheries in Kamchatka Territory in 2018–2022 (forecasts, fisheries, stocks). Сommunication 2 (Sockeye salmon, Coho salmon, Chinook salmon), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2023, vol. 68, pp. 42–62. doi:10.15853/2072-8212.2023.68.42-62

5. Bugaev, A.V., Zikunova, O.V., Shpigalskaya, N.Yu., Artyukhina, N.B., Shubkin, S.V., Kovalenko, M.N., and Lozovoy, A.P., Analytical review of the results of salmon fisheries in Kamchatka Territory in 2018–2022 (forecasts, fisheries, stocks). Communication 1 (Pink salmon, Chum salmon), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2023, vol. 68, pp. 5–41. doi:10.15853/2072-8212.2023.68.5-41

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3