Affiliation:
1. National Medical University named after O.O. Bogomolets, Kyiv, Ukraine
2. Institute of Hygiene and Ecology of the National Medical University named after O.O. Bogomolets, Kyiv, Ukraine
Abstract
ABSTRACT. The expansion of the range and volume of application of plant protection products in agriculture increases the risk of contamination of soil, and subsequently of underground and surface water sources, especially with highly persistent pesticides in the soil.
Аim. Establishing and comparative assessment of migration characteristics of new pesticides — representatives of different chemical classes, from soil to groundwater when modelling different initial concentrations and irrigation regimes.
Materials and Мethods. In a laboratory experiment, the migration of the investigated substances in the soil – ground water system was studied with the help of filtration columns designed by the Academician E.H. Honcharuk. Soil Standard Model no 1 (SSM no 1) and leached chernozem were used as arable soil layers. Three hydraulic regimes were simulated: annual, three-month, or monthly precipitation rates were supplied to the column for 30 days. The initial concentrations of amicarbazone, bicyclopyrone, and pydiflumetofen corresponded to both one maximum consumption rate (m.c.r.) and 0.5, 0.2 and 5 m.c.r. respectively. Quantitative determination of the studied substances in the filtrate was carried out by the method of high-performance liquid chromatography.
The results. It was established that with higher initial concentrations of all three substances in the topsoil and greater hydraulic load on the filtration column in the case of both herbicides, the concentrations of compounds in the filtrate were higher. At the same time, with the same arable soil layer (SSM no 1) and hydraulic load (maximum) and almost the same initial concentration in the soil (0.05 and 0.06 mg/kg), bicyclopyrone appeared in the filtrate much earlier and in in larger quantities, its maximum concentration in the filtrate was reached much faster, it was 17 times higher. It took much more time to detect pydiflumetofen than bicyclopyrone. The migration levels of bicyclopyrone were almost independent of the type of arable soil layer, while pydiflumetofen in leached chernozem retained longer and migrated more slowly than in SSM no 1.
Conclusions. Both general regularities and significant differences in the migration of the studied substances to the ground water depending on the soil profile were revealed. It has been proven that, compared to bicyclopyrone, pydiflumetofen is less mobile, appears in the filtrate much later and migrates from SSM no 1 more slowly. Compared to bicyclopyrone, amicarbazone is more mobile, migrates from leached chernozem longer and more intensively. The highest potential danger of groundwater contamination due to vertical migration from chernozem, the most common soil type in Ukraine, is inherent to amicarbazone, the lowest — to pydiflumetofen.
Keywords: plant protection products, herbicide, fungicide, soil, groundwater, migration, pollution, threshold limit value.
Publisher
L. I. Medved Research Center of Preventive Toxicology, Food and Chemical Safety
Reference19 articles.
1. 1. Ткаченко ІВ, Антоненко АМ, Бардов ВГ. Гігієнічна оцінка змін асортименту та обсягів застосування пестицидів у сільському господарстві України з 2015 по 2019. Медична наука України. 2019;3–4:64–8. DOI: 10.32345/2664-4738.3-4.2019.10. [Tkachenko IV, Antonenko OM, Bardov VG. Hygienic assessment of changes in the range and volume of pesticide use in the agriculture of Ukraine from 2015 to 2019. Medical Science of Ukraine. 2019;3–4:64–8. DOI: 10.32345/2664-4738.3-4.2019.10].
2. 2. Опубліковано статистику використання ЗЗР в Україні та світі. 10 червня 2021 р. [Електронний ресурс]. – Режим доступу: https://superagronom.com/news/13330-opublikovano-statistiku-vikoristannya-zzr-v-ukrayini-tasviti#. [Statistics on the use of PPE in Ukraine and the world have been published. June 10, 2021. [Electronic resource]. – Access mode: https://superagronom.com/news/13330-opublikovano-statistiku-vikoristannya-zzr-v-ukrayini-ta-sviti#].
3. 3. Водна стратегія України на період до 2050 року. Схвалена Розпорядженням Кабінету Міністрів України від 9 грудня 2022 р. № 1134-р. [Електронний ресурс]. – Режим доступу: https://zakon.rada.gov.ua/laws/show/1134-2022-%D1%80#Text. [Water strategy of Ukraine for the period until 2050. Approved by the Decree of the Cabinet of Ministers of Ukraine dated December 9, 2022 №. 1134. [Electronic resource] – Access mode: https://zakon.rada.gov.ua/laws/show/1134-2022-%D1%80#Text].
4. 4. Національна доповідь про якість питної води та стан питного водопостачання в Україні у 2020 році. Київ, 2021. – 385 с. [Електронний ресурс]. – Режим доступу: https://mtu.gov.ua/content/nacionalna-dopovid-pro-yakistpitnoi-vodi-ta-stan-pitnogo-vodopostachannya-vukraini.html. [National report on the quality of drinking water and the state of drinking water supply in Ukraine in 2020. Kyiv, 2021. – 385 p. [Electronic resource]. – Access mode: https://mtu.gov.ua/content/nacionalna-dopovid-proyakist-pitnoi-vodi-ta-stan-pitnogo-vodopostachannya-vukraini.html].
5. 5. Бондаренко ЮГ, Джулай ОС, Рябовол ВМ, Нікітюк СС. Епідеміологічна оцінка впливу нітратів питної води децентралізованих джерел водопостачання на здоров’я дітей раннього віку у Черкаській області. Довкілля та здоров’я. 2019;3(92):38–41. DOI: 10.32402/dovkil2019.03.038. [Bondarenko YG, Julai OS, Ryabovol VM, Nikityuk SS. Epidemiological assessment of the impact of nitrates in drinking water from decentralized water supply sources on the health of young children in the Cherkasy region. Environment and health. 2019;3(92):38–41.] DOI: 10.32402/dovkil2019.03.038.