Ubiquitous macropinocytosis in anthozoans

Author:

Ganot Philippe1ORCID,Tambutté Eric1,Caminiti-Segonds Natacha1,Toullec Gaëlle1,Allemand Denis1,Tambutté Sylvie1

Affiliation:

1. Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco

Abstract

Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells’ cytoplasm is macropinocytosis. Most cells form large vesicles of 350–600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.

Funder

Government of the Principality of Monaco

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference77 articles.

1. Valine uptake by the scleractinian coral Galaxea fascicularis: characterization and effect of light and nutritional status;Al-Moghrabi;Journal of Comparative Physiology B,1993

2. Coral Calcification, Cells to Reefs

3. Chemoreception drives plastic consumption in a hard coral;Allen;Marine Pollution Bulletin,2017

4. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton;Apodaca;Traffic,2001

5. Transport of amino acids into freshly isolated cells from a sea Anemone;Apte;Endocytobiosis and Cell Research,1996

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3