Machine learning of dissection photographs and surface scanning for quantitative 3D neuropathology

Author:

Gazula Harshvardhan1,Tregidgo Henry F. J.2ORCID,Billot Benjamin3,Balbastre Yael1,William-Ramirez Jonathan1,Herisse Rogeny1,Deden-Binder Lucas J1,Casamitjana Adrià24,Melief Erica J.5,Latimer Caitlin S.5,Kilgore Mitchell D.5,Montine Mark5,Robinson Eleanor2,Blackburn Emily2,Marshall Michael S.6,Connors Theresa R.6,Oakley Derek H.6ORCID,Frosch Matthew P.6,Young Sean I.1,Van Leemput Koen17,Dalca Adrian V.13,FIschl Bruce1,Mac Donald Christine L.8,Keene C. Dirk5,Hyman Bradley T.6ORCID,Iglesias Juan Eugenio123

Affiliation:

1. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School

2. Centre for Medical Image Computing, University College London

3. Computer Science and Artificial Intelligence Laboratory

4. Biomedical Imaging Group, Universitat Politècnica de Catalunya

5. BioRepository and Integrated Neuropathology (BRaIN) laboratory and Precision Neuropathology Core, UW School of Medicine

6. Massachusetts Alzheimer Disease Research Center, MGH and Harvard Medical School

7. Neuroscience and Biomedical Engineering, Aalto University

8. Department of Neurological Surgery, UW School of Medicine

Abstract

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer’s Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer’s disease cases and controls. The tools are available in our widespread neuroimaging suite “FreeSurfer” (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).

Publisher

eLife Sciences Publications, Ltd

Reference49 articles.

1. Tensorflow: A system for large-scale machine learning,2016

2. Deep learning for brain MRI segmentation: state of the art and future directions;Journal of digital imaging,2017

3. A Learning Strategy for Contrast-agnostic MRI Segmentation,2020

4. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining,2023

5. Robust machine learning segmentation for largescale analysis of heterogeneous clinical brain MRI datasets;Proceedings of the National Academy of Sciences,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3