Robotic multi-probe single-actuator inchworm neural microdrive

Author:

Smith Richard D1ORCID,Kolb Ilya1ORCID,Tanaka Shinsuke1,Lee Albert K1ORCID,Harris Timothy D1ORCID,Barbic Mladen1ORCID

Affiliation:

1. Janelia Research Campus, Howard Hughes Medical Institute

Abstract

A wide range of techniques in neuroscience involve placing individual probes at precise locations in the brain. However, large-scale measurement and manipulation of the brain using such methods have been severely limited by the inability to miniaturize systems for probe positioning. Here, we present a fundamentally new, remote-controlled micropositioning approach composed of novel phase-change material-filled resistive heater micro-grippers arranged in an inchworm motor configuration. The microscopic dimensions, stability, gentle gripping action, individual electronic control, and high packing density of the grippers allow micrometer-precision independent positioning of many arbitrarily shaped probes using a single piezo actuator. This multi-probe single-actuator design significantly reduces the size and weight and allows for potential automation of microdrives. We demonstrate accurate placement of multiple electrodes into the rat hippocampus in vivo in acute and chronic preparations. Our robotic microdrive technology should therefore enable the scaling up of many types of multi-probe applications in neuroscience and other fields.

Funder

Howard Hughes Medical Institute

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference75 articles.

1. Lightweight microdrive for simultaneous recording of several units in awake freely moving rat;Ainsworth;J Physiol-London,1977

2. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology;Andrásfalvy;Nature Methods,2014

3. Phase-Transition regularities in critical constants, fusion temperatures and enthalpies of chemically similar chainlike structures;Balaban;Chemphyschem,2005

4. Detachable glass microelectrodes for recording action potentials in active moving organs;Barbic;American Journal of Physiology. Heart and Circulatory Physiology,2017

5. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals;Battaglia;Journal of Neuroscience Methods,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3