Exploring the Spatial Distribution of Persistent SARS-CoV-2 Mutations - Leveraging mobility data for targeted sampling

Author:

Spott Riccardo1ORCID,Pletz Mathias W.12,Fleischmann-Struzek Carolin12,Kimmig Aurelia1,Hadlich Christiane3,Hauert Mathias3,Lohde Mara1ORCID,Jundzill Mateusz1,Marquet Mike1ORCID,Dickmann Petra4,Schüchner Ruben5,Hölzer Martin6,Kühnert Denise78,Brandt Christian1

Affiliation:

1. Institute for Infectious Diseases and Infection Control, Jena University Hospital

2. Center for Sepsis Control and Care, Jena University Hospital/Friedrich Schiller University Jena

3. SMA Development GmbH - epicinsights Agentur für Künstliche Intelligenz und Big Data Analytics

4. Department of Anaesthesiology and Intensive Care, Jena University Hospital

5. Thuringian State Authority for Consumer Protection, Department Health Protection

6. Methodology and Research Infrastructure, Genome Competence Center (MF1), Robert Koch Institute

7. Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute

8. Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for Geoanthropology

Abstract

Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6,500 SARS-CoV-2 Alpha genomes (B.1.1.7) across seven months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are sub-clusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept proved successful as we introduced a mobility-guided sampling strategy for the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3