Chromosome Structure I: Loop extrusion or boundary:boundary pairing?

Author:

Bing Xinyang12ORCID,Ke Wenfan3ORCID,Fujioka Miki4,Kurbidaeva Amina35,Levitt Sarah3,Levine Mike1,Schedl Paul3ORCID,Jaynes James B.4

Affiliation:

1. Lewis Sigler Institute, Princeton University

2. BlueRock Therapeutics, Cambridge

3. Department of Molecular Biology, Princeton University

4. Department of Biochemistry and Molecular Biology, Thomas Jefferson University

5. Center for Genomics and Systems Biology

Abstract

Two different models have been proposed to explain how the endpoints of chromatin looped domains (“TADs”) in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop (and an unanchored loop). In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized and experimental manipulations of the even skipped TAD boundary, homie , to test the predictions of the “loop-extrusion” and the “boundary-pairing” models. Our findings are incompatible with the loop-extrusion model and instead suggest that endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head, or head-to-tail, with varying degrees of specificity. How the partners find each other is not clear but is unlikely to require a loop extrusion mechanism.

Publisher

eLife Sciences Publications, Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3