Reliable protein-protein docking with AlphaFold, Rosetta, and replica-exchange

Author:

Harmalkar Ameya1ORCID,Lyskov Sergey1,Gray Jeffrey J.12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, The Johns Hopkins University

2. Program in Molecular Biophysics, The Johns Hopkins University

Abstract

Despite the recent breakthrough of AlphaFold (AF) in the field of protein sequence-to-structure prediction, modeling protein interfaces and predicting protein complex structures remains challenging, especially when there is a significant conformational change in one or both binding partners. Prior studies have demonstrated that AF-multimer (AFm) can predict accurate protein complexes in only up to 43% of cases. 1 In this work, we combine AlphaFold as a structural template generator with a physics-based replica exchange docking algorithm. Using a curated collection of 254 available protein targets with both unbound and bound structures, we first demonstrate that AlphaFold confidence measures (pLDDT) can be repurposed for estimating protein flexibility and docking accuracy for multimers. We incorporate these metrics within our ReplicaDock 2.0 protocol 2 to complete a robust in-silico pipeline for accurate protein complex structure prediction. AlphaRED (AlphaFold-initiated Replica Exchange Docking) successfully docks failed AF predictions including 97 failure cases in Docking Benchmark Set 5.5. AlphaRED generates CAPRI acceptable-quality or better predictions for 66% of benchmark targets. Further, on a subset of antigen-antibody targets, which is challenging for AFm (19% success rate), AlphaRED demonstrates a success rate of 51%. This new strategy demonstrates the success possible by integrating deep-learning based architectures trained on evolutionary information with physics-based enhanced sampling. The pipeline is available at github.com/Graylab/AlphaRED.

Publisher

eLife Sciences Publications, Ltd

Reference47 articles.

1. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants;Protein Science,2022

2. Induced fit with replica exchange improves protein complex structure prediction;PLOS Computational Biology,2022

3. Highly accurate protein structure prediction with alphafold;Nature,2021

4. Accurate prediction of protein structures and interactions using a three-track neural network;Science,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3