Affiliation:
1. Department of Developmental Neurobiology, St. Jude Children’s Research Hospital
2. Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital
3. Department of Structural Biology, St. Jude Children’s Research Hospital
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the
Drosophila
retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific eff
RNAi
by re-establishing the physiological levels of eff
RNAi
-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces many of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme for maintaining a youthful proteome and for ensuring protein quality control during aging.
Publisher
eLife Sciences Publications, Ltd