Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

Author:

Clark Natalie M12ORCID,Hinde Elizabeth3,Winter Cara M4,Fisher Adam P1,Crosti Giuseppe4,Blilou Ikram5,Gratton Enrico3,Benfey Philip N4ORCID,Sozzani Rosangela1

Affiliation:

1. Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States

2. Biomathematics Graduate Program, North Carolina State University, Raleigh, United States

3. Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States

4. Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States

5. Plant Developmental Biology, Wageningen University, Wageningen, Netherlands

Abstract

To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

Funder

National Science Foundation

National Institutes of Health

Howard Hughes Medical Institute

Gordon and Betty Moore Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3