Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

Author:

Sherratt Katharine1ORCID,Gruson Hugo1,Grah Rok2,Johnson Helen2,Niehus Rene2,Prasse Bastian2,Sandmann Frank2,Deuschel Jannik3,Wolffram Daniel3ORCID,Abbott Sam1,Ullrich Alexander4,Gibson Graham5,Ray Evan L5,Reich Nicholas G5,Sheldon Daniel5,Wang Yijin5ORCID,Wattanachit Nutcha5,Wang Lijing6,Trnka Jan7ORCID,Obozinski Guillaume8,Sun Tao8ORCID,Thanou Dorina8,Pottier Loic9,Krymova Ekaterina10,Meinke Jan H11,Barbarossa Maria Vittoria12,Leithauser Neele13,Mohring Jan13,Schneider Johanna13ORCID,Wlazlo Jaroslaw13,Fuhrmann Jan14ORCID,Lange Berit15,Rodiah Isti15,Baccam Prasith16,Gurung Heidi16,Stage Steven16,Suchoski Bradley16,Budzinski Jozef17,Walraven Robert17,Villanueva Inmaculada18ORCID,Tucek Vit19,Smid Martin20,Zajicek Milan20ORCID,Perez Alvarez Cesar21,Reina Borja21,Bosse Nikos I1,Meakin Sophie R1,Castro Lauren22,Fairchild Geoffrey22,Michaud Isaac22,Osthus Dave22,Alaimo Di Loro Pierfrancesco23,Maruotti Antonello23ORCID,Eclerova Veronika24ORCID,Kraus Andrea24,Kraus David24,Pribylova Lenka24,Dimitris Bertsimas25,Li Michael Lingzhi25,Saksham Soni25,Dehning Jonas26,Mohr Sebastian26,Priesemann Viola26ORCID,Redlarski Grzegorz27,Bejar Benjamin28,Ardenghi Giovanni29,Parolini Nicola29,Ziarelli Giovanni29,Bock Wolfgang30,Heyder Stefan31,Hotz Thomas31,Singh David E32,Guzman-Merino Miguel32,Aznarte Jose L33,Morina David34,Alonso Sergio35ORCID,Alvarez Enric35,Lopez Daniel35,Prats Clara35ORCID,Burgard Jan Pablo36ORCID,Rodloff Arne37,Zimmermann Tom37,Kuhlmann Alexander38,Zibert Janez39,Pennoni Fulvia40,Divino Fabio41,Catala Marti42,Lovison Gianfranco43,Giudici Paolo44,Tarantino Barbara44,Bartolucci Francesco45,Jona Lasinio Giovanna46,Mingione Marco46,Farcomeni Alessio47ORCID,Srivastava Ajitesh48,Montero-Manso Pablo49,Adiga Aniruddha50,Hurt Benjamin50,Lewis Bryan50ORCID,Marathe Madhav50,Porebski Przemyslaw50ORCID,Venkatramanan Srinivasan50,Bartczuk Rafal P51ORCID,Dreger Filip51,Gambin Anna51,Gogolewski Krzysztof51ORCID,Gruziel-Slomka Magdalena51,Krupa Bartosz51,Moszyński Antoni51,Niedzielewski Karol51,Nowosielski Jedrzej51,Radwan Maciej51,Rakowski Franciszek51,Semeniuk Marcin51,Szczurek Ewa51,Zielinski Jakub51ORCID,Kisielewski Jan5152,Pabjan Barbara53,Holger Kirsten54,Kheifetz Yuri54,Scholz Markus54,Przemyslaw Biecek55,Bodych Marcin56,Filinski Maciej56,Idzikowski Radoslaw56,Krueger Tyll56,Ozanski Tomasz56,Bracher Johannes3,Funk Sebastian1ORCID

Affiliation:

1. London School of Hygiene & Tropical Medicine

2. European Centre for Disease Prevention and Control (ECDC)

3. Karlsruhe Institute of Technology

4. Robert Koch Institute

5. University of Massachusetts Amherst

6. Boston Children’s Hospital and Harvard Medical School

7. Third Faculty of Medicine, Charles University

8. Ecole Polytechnique Federale de Lausanne

9. Éducation nationale

10. Eidgenossische Technische Hochschule

11. Forschungszentrum Jülich GmbH

12. Frankfurt Institute for Advanced Studies

13. Fraunhofer Institute for Industrial Mathematics

14. Heidelberg University

15. Helmholtz Centre for Infection Research

16. IEM, Inc

17. Independent researcher

18. Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat Pompeu Fabra

19. Institute of Computer Science of the CAS

20. Institute of Information Theory and Automation of the CAS

21. Inverence

22. Los Alamos National Laboratory

23. LUMSA University

24. Masaryk University

25. Massachusetts Institute of Technology

26. Max-Planck-Institut für Dynamik und Selbstorganisation

27. Medical University of Gdansk

28. Paul Scherrer Institute

29. Politecnico di Milano

30. Technical University of Kaiserlautern

31. Technische Universität Ilmenau

32. Universidad Carlos III de Madrid

33. Universidad Nacional de Educación a Distancia (UNED)

34. Universitat de Barcelona

35. Universitat Politècnica de Catalunya

36. Universitat Trier

37. University of Cologne

38. University of Halle

39. University of Ljubljana

40. University of Milano-Bicocca

41. University of Molise

42. University of Oxford

43. University of Palermo

44. University of Pavia

45. University of Perugia

46. University of Rome "La Sapienza"

47. University of Rome "Tor Vergata"

48. University of Southern California

49. University of Sydney

50. University of Virginia

51. University of Warsaw

52. University of Bialystok

53. University of Wroclaw

54. Universtät Leipzig

55. Warsaw University of Technology

56. Wroclaw University of Science and Technology

Abstract

Background:Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.Methods:We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.Results:Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.Conclusions:Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.Funding:AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

Funder

Netzwerk Universitätsmedizin

FISR

Agència de Qualitat i Avaluació Sanitàries de Catalunya

European Centre for Disease Prevention and Control

European Commission

Bundesministerium für Bildung und Forschung

Health Protection Research Unit

InPresa

Los Alamos National Laboratory

MUNI

Ministerio de Sanidad

Ministry of Science and Higher Education of Poland

National Institute of General Medical Sciences

National Institutes of Health

Virginia Department of Health

Narodowe Centrum Badań i Rozwoju

Horizon 2020

German Free State of Saxony

Spanish Ministry of Health, Social Policy and Equality

Wellcome Trust

RECETOX Přírodovědecké Fakulty Masarykovy Univerzity

CETOCOEN EXCELLENCEC

RECETOX RI project

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3