Reconstructing Voice Identity from Noninvasive Auditory Cortex Recordings

Author:

Lamothe Charly12ORCID,Thoret Etienne1234ORCID,Trapeau Régis1ORCID,Giordano Bruno L1ORCID,Sein Julien15ORCID,Takerkart Sylvain1ORCID,Ayache Stéphane2ORCID,Artières Thierry26ORCID,Belin Pascal1ORCID

Affiliation:

1. La Timone Neuroscience Institute UMR 7289

2. Laboratoire d’Informatique et Systèmes UMR 7020

3. Perception, Representation, Image, Sound, Music UMR 7061

4. Institute of Language Communication & the Brain

5. Centre IRM-INT@CERIMED

6. École Centrale de Marseille

Abstract

The cerebral processing of voice information is known to engage, in human as well as non-human primates, “temporal voice areas” (TVAs) that respond preferentially to conspecific vocalizations. However, how voice information is represented by neuronal populations in these areas, particularly speaker identity information, remains poorly understood. Here, we used a deep neural network (DNN) to generate a high-level, small-dimension representational space for voice identity—the ‘voice latent space’ (VLS)—and examined its linear relation with cerebral activity via encoding, representational similarity, and decoding analyses. We find that the VLS maps onto fMRI measures of cerebral activity in response to tens of thousands of voice stimuli from hundreds of different speaker identities and better accounts for the representational geometry for speaker identity in the TVAs than in A1. Moreover, the VLS allowed TVA-based reconstructions of voice stimuli that preserved essential aspects of speaker identity as assessed by both machine classifiers and human listeners. These results indicate that the DNN-derived VLS provides high-level representations of voice identity information in the TVAs.

Publisher

eLife Sciences Publications, Ltd

Reference90 articles.

1. Machine Learning for Neuroimaging with Scikit-Learn;Frontiers in Neuroinformatics,2014

2. FMRI-Based Identity Classification Accuracy in Left Temporal and Frontal Regions Predicts Speaker Recognition Performance;Scientific Reports,2021

3. Towards Reconstructing Intelligible Speech from the Human Auditory Cortex;Scientific Reports,2019

4. Common Voice: A Massively-Multilingual Speech Corpus,2020

5. SPM: A History;NeuroImage,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3