Real-time transcriptomic profiling in distinct experimental conditions

Author:

Butto Tamer1ORCID,Pastore Stefan12,Müller Max1,Iyer Kaushik Viswanathan1,Mündnich Stefan1,Wierczeiko Anna2,Friedland Kristina1,Helm Mark1,Winz Marie-Luise1,Gerber Susanne2ORCID

Affiliation:

1. Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz

2. Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz

Abstract

Nanopore technology offers real-time sequencing opportunities, providing rapid access to sequenced data and allowing researchers to manage the sequencing process efficiently, resulting in cost-effective strategies. Here, we present focused case studies demonstrating the versatility of real-time transcriptomics analysis in rapid quality control for long-read RNA-seq. We illustrate its utility through three experimental setups: 1) transcriptome profiling of distinct human cellular populations, 2) identification of experimentally enriched transcripts, and 3) identification of experimentally manipulated genes (knockout and overexpression) in several yeast strains. We show how to perform multiple layers of quality control as soon as sequencing has started, addressing both the quality of the experimental and sequencing traits. Real-time quality control measures assess sample/condition variability and determine the number of identified genes per sample/condition. Furthermore, real-time differential gene/transcript expression analysis can be conducted at various time points post-sequencing initiation (PSI), revealing dynamic changes in gene/transcript expression between two conditions. Using real-time analysis, which occurs in parallel to the sequencing run, we identified differentially expressed genes/transcripts as early as 1-hour PSI. These changes were consistently observed throughout the entire sequencing process. We discuss the new possibilities offered by real-time data analysis, which have the potential to serve as a valuable tool for rapid and cost-effective quality checks in specific experimental settings and can be potentially integrated into clinical applications in the future.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3