Sub-type specific connectivity between CA3 pyramidal neurons may underlie their sequential activation during sharp waves

Author:

Sammons Rosanna P.12,Masserini Stefano345,Moreno-Velasquez Laura1ORCID,Metodieva Verjinia D.15,Cano Gaspar3,Sannio Andrea1,Orlando Marta12,Maier Nikolaus1ORCID,Kempter Richard345ORCID,Schmitz Dietmar14567ORCID

Affiliation:

1. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center

2. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence

3. Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin

4. Bernstein Center for Computational Neuroscience Berlin

5. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences Berlin

6. German Center for Neurodegenerative Diseases (DZNE) Berlin

7. Max-Delbrück Center for Molecular Medicine in the Helmholtz Association

Abstract

The CA3 region of the hippocampus is the major site of sharp wave initiation, a form a network activity involved in learning and memory. Highly recurrent connectivity within its excitatory network is thought to underlie processes involved in memory formation. Recent work has indicated that distinct subpopulations of pyramidal neurons within this region may contribute differently to network activity, including sharp waves, in CA3. Exactly how these contributions may arise is not yet known. Here, we disentangle the local connectivity between two distinct CA3 cell types: thorny and athorny pyramidal cells. We find an asymmetry in the connectivity between these two populations, with athorny cells receiving strong input from both athorny and thorny cells. Conversely, the thorny cell population receives very little input from the athorny population. Computational modelling suggests that this connectivity scheme may determine the sequential activation of these cell types during large network events such as sharp waves.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3