Ezrin defines TSC1 activation at endosomal compartments through EGFR-AKT signaling

Author:

Giamundo Giuliana1ORCID,Intartaglia Daniela1ORCID,Prete Eugenio Del2,Polishchuk Elena2,Andreone Fabrizio2,Ognibene Marzia3,Buonocore Sara1,Salierno Francesco Giuseppe2,Monfregola Jlenia2,Antonini Dario1,Grumati Paolo24ORCID,Eva Alessandra5,de Cegli Rossella2,Conte Ivan1ORCID

Affiliation:

1. Department of Biology, University of Naples Federico II

2. Telethon Institute of Genetics and Medicine

3. U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini

4. Clinical Medicine and Surgery, University of Naples Federico II

5. Laboratory of Molecular Biology

Abstract

Endosomes have emerged as major signaling hubs where different internalized ligand-receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane-actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was deficient in TSC repression by EGF and culminated in translocation of TSC to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRIN T567D is sufficient to relocalize TSC to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3