Interdependence between SEB-3 and NLP-49 peptides shifts across predator-induced defensive behavioral modes in Caenorhabditis elegans

Author:

Quach Kathleen T1,Hughes Gillian A1,Chalasani Sreekanth H1ORCID

Affiliation:

1. Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies

Abstract

Prey must balance the need to avoid predators with the need to feed, a dilemma central to prey refuge theory. Additionally, prey must also assess predatory imminence, or how close predator threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes—pre-encounter, post-encounter, and circa-strike—each corresponding to increasing levels of predatory imminence—suspecting a predator, detecting a predator, and contact with a predatory attack. Although prey often simultaneously face variations in predatory imminence and spatial distribution of predation risks, research on how these factors intersect to influence defensive behaviors has been limited. Integrating these factors into a complex, naturalistic environment could enable comprehensive analysis of multiple defense modes in consistent conditions within the same study, unlike laboratory tests designed to examine only one mode at a time. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. We show that C. elegans innately exhibits circa-strike behaviors in a foraging environment comprised of a food-rich, high-risk patch and a food-poor, predator-free refuge. However, after extended experience in this environment, C. elegans acquires post- and pre-encounter behaviors that proactively anticipate threats rather than merely reacting to attacks. We also demonstrate that these defense modes are potentiated by increasingly harmful predators, with only life-threatening predators capable of eliciting all three defense modes. Finally, our model system reveals that SEB-3 receptors and NLP-49 peptides, key to stress response regulation, vary in their impact and interdependence across defense modes. We find that SEB-3 has a greater impact on the highest-imminence defense mode, while NLP-49 peptides have a stronger effect on the lowest-imminence defense mode. Overall, our model system reveals detailed and comprehensive insights into how stress-related molecular signaling affects behavioral responses to threats.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3