Affiliation:
1. Jawaharlal Nehru Centre for Advanced Scientific Research
2. Institute for Stem Cell Science and Regenerative Medicine (inStem)
Abstract
The Transforming Growth Factor β (TGFβ) signaling pathway is critical for survival, proliferation, and cell migration, and is tightly regulated during cardiovascular development. Smads, key effectors of TGFβ signaling, are sequestered by microtubules (MTs) and need to be released for pathway function. Independently, TGFβ signaling also stabilizes MTs. Molecular details and the
in vivo
relevance of this cross-regulation remain unclear, understanding which is important in complex biological processes such as cardiovascular development. Here, we use
rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3)
, a MT-associated, endothelium-restricted and developmentally essential proto-oncogene, as a pivot to decipher cellular mechanisms in bridging TGFβ signaling and MT stability. We show that Rudhira regulates TGFβ signaling
in vivo,
during mouse cardiovascular development, and in endothelial cells in culture. Rudhira-MT association is essential for the activation and release of Smad2/3 from MTs. Consequently, Rudhira depletion attenuates Smad2/3-dependent TGFβ signaling thereby impairing cell migration. Interestingly, Rudhira is also a transcriptional target of Smad2/3-dependent TGFβ signaling essential for TGFβ-induced MT stability. Our study identifies an immediate early physical role and a slower, transcription-dependent role for Rudhira in cytoskeleton-TGFβ signaling crosstalk. These two phases of control could facilitate temporally– and spatially restricted targeting of the cytoskeleton and/or TGFβ signaling in vascular development and disease.
Publisher
eLife Sciences Publications, Ltd