NeuroQuery, comprehensive meta-analysis of human brain mapping

Author:

Dockès Jérôme1ORCID,Poldrack Russell A2ORCID,Primet Romain3,Gözükan Hande3,Yarkoni Tal4,Suchanek Fabian5,Thirion Bertrand1,Varoquaux Gaël16ORCID

Affiliation:

1. Inria, CEA, Université Paris-Saclay, Essonne, France

2. Stanford University, Stanford, United States

3. Inria, Paris, France

4. University of Texas at Austin, Austin, United States

5. Télécom Paris University, Palaiseau, France

6. Montréal Neurological Institute, McGill University, Montreal, Canada

Abstract

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.

Funder

Digiteo

National Institutes of Health

Agence Nationale de la Recherche

H2020 European Research Council

Canada First Research Excellence Fund

National Science Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference53 articles.

1. Latent dirichlet allocation;Blei;Journal of Machine Learning Research,2003

2. Normalized (pointwise) mutual information in collocation extraction;Bouma,2009

3. NeuroNames brain hierarchy;Bowden;NeuroImage,1995

4. Power failure: why small sample size undermines the reliability of neuroscience;Button;Nature Reviews Neuroscience,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3