Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections

Author:

Jacobs Sem H1ORCID,Dóró Eva1,Hammond Ffion R2,Nguyen-Chi Mai E3,Lutfalla Georges4,Wiegertjes Geert F5,Forlenza Maria6ORCID

Affiliation:

1. Animal Sciences, Wageningen University and Research, Wageningen, Netherlands

2. Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield,, Sheffield, United Kingdom

3. LIPH, CNRS, INSERM, Univ Montpellier, Montpellier, France

4. DIMNP, LIPH, CNRS, INSERM, Univ Montpellier, Montpellier, France;, Montpellier, France

5. Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands

6. Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands

Abstract

A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterize their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterized by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.

Funder

Marie Curie Initial Training Network

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3