Intergenerational adaptations to stress are evolutionarily conserved, stress-specific, and have deleterious trade-offs

Author:

Burton Nicholas O123ORCID,Willis Alexandra4,Fisher Kinsey5,Braukmann Fabian2,Price Jonathan2ORCID,Stevens Lewis67ORCID,Baugh L Ryan58ORCID,Reinke Aaron4ORCID,Miska Eric A279ORCID

Affiliation:

1. Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom

2. Gurdon Institute, University of Cambridge, Cambridge, United Kingdom

3. Van Andel Institute, Grand Rapids, United States

4. Department of Molecular Genetics, University of Toronto, Toronto, Canada

5. Department of Biology, Duke University, Durham, United States

6. Department of Molecular Biosciences, Northwestern University, Evanston, United States

7. Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom

8. Center for Genomic and Computational Biology, Duke University, Durham, United States

9. Department of Genetics, University of Cambridge, Cambridge, United Kingdom

Abstract

Despite reports of parental exposure to stress promoting physiological adaptations in progeny in diverse organisms, there remains considerable debate over the significance and evolutionary conservation of such multigenerational effects. Here, we investigate four independent models of intergenerational adaptations to stress in Caenorhabditis elegans – bacterial infection, eukaryotic infection, osmotic stress, and nutrient stress – across multiple species. We found that all four intergenerational physiological adaptations are conserved in at least one other species, that they are stress -specific, and that they have deleterious tradeoffs in mismatched environments. By profiling the effects of parental bacterial infection and osmotic stress exposure on progeny gene expression across species, we established a core set of 587 genes that exhibited a greater than twofold intergenerational change in expression in response to stress in C. elegans and at least one other species, as well as a set of 37 highly conserved genes that exhibited a greater than twofold intergenerational change in expression in all four species tested. Furthermore, we provide evidence suggesting that presumed adaptive and deleterious intergenerational effects are molecularly related at the gene expression level. Lastly, we found that none of the effects we detected of these stresses on C. elegans F1 progeny gene expression persisted transgenerationally three generations after stress exposure. We conclude that intergenerational responses to stress play a substantial and evolutionarily conserved role in regulating animal physiology and that the vast majority of the effects of parental stress on progeny gene expression are reversible and not maintained transgenerationally.

Funder

Centre Trophoblast Research

National Institutes of Health

Natural Sciences and Engineering Research Council of Canada

Alfred P. Sloan Foundation

Cancer Research UK

Wellcome Trust

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3