ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal

Author:

Jalalvand Elham1ORCID,Alvelid Jonatan1ORCID,Coceano Giovanna1,Edwards Steven1,Robertson Brita2,Grillner Sten2ORCID,Testa Ilaria1ORCID

Affiliation:

1. Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology

2. Department of Neuroscience, Karolinska Institutet

Abstract

Cerebrospinal fluid-contacting (CSF-c) neurons line the central canal of the spinal cord and a subtype of CSF-c neurons expressing somatostatin, forms a homeostatic pH regulating system. Despite their importance, their intricate spatial organization is poorly understood. The function of another subtype of CSF-c neurons expressing dopamine is also investigated. Imaging methods with a high spatial resolution (5–10 nm) are used to resolve the synaptic and ciliary compartments of each individual cell in the spinal cord of the lamprey to elucidate their signalling pathways and to dissect the cellular organization. Here, light-sheet and expansion microscopy resolved the persistent ventral and lateral organization of dopamine- and somatostatin-expressing CSF-c neuronal subtypes. The density of somatostatin-containing dense-core vesicles, resolved by stimulated emission depletion microscopy, was shown to be markedly reduced upon each exposure to either alkaline or acidic pH and being part of a homeostatic response inhibiting movements. Their cilia symmetry was unravelled by stimulated emission depletion microscopy in expanded tissues as sensory with 9 + 0 microtubule duplets. The dopaminergic CSF-c neurons on the other hand have a motile cilium with the characteristic 9 + 2 duplets and are insensitive to pH changes. This novel experimental workflow elucidates the functional role of CSF-c neuron subtypes in situ paving the way for further spatial and functional cell-type classification.

Funder

Swedish Foundation for Strategic Research

Swedish Research Council

Royal Institute of Technology

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3