Cell-cycle-gated feedback control mediates desensitization to interferon stimulation

Author:

Mudla Anusorn1ORCID,Jiang Yanfei1ORCID,Arimoto Kei-ichiro1,Xu Bingxian1,Rajesh Adarsh2,Ryan Andy P1,Wang Wei3,Daugherty Matthew D1ORCID,Zhang Dong-Er14,Hao Nan1ORCID

Affiliation:

1. Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States

2. Department of Bioengineering, University of California, San Diego, La Jolla, United States

3. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, United States

4. Department of Pathology, Moores UCSD Cancer Center, University of California, San Diego, La Jolla, United States

Abstract

Cells use molecular circuits to interpret and respond to extracellular cues, such as hormones and cytokines, which are often released in a temporally varying fashion. In this study, we combine microfluidics, time-lapse microscopy, and computational modeling to investigate how the type I interferon (IFN)-responsive regulatory network operates in single human cells to process repetitive IFN stimulation. We found that IFN-α pretreatments lead to opposite effects, priming versus desensitization, depending on input durations. These effects are governed by a regulatory network composed of a fast-acting positive feedback loop and a delayed negative feedback loop, mediated by upregulation of ubiquitin-specific peptidase 18 (USP18). We further revealed that USP18 upregulation can only be initiated at the G1/early S phases of cell cycle upon the treatment onset, resulting in heterogeneous and delayed induction kinetics in single cells. This cell cycle gating provides a temporal compartmentalization of feedback loops, enabling duration-dependent desensitization to repetitive stimulations.

Funder

National Institute of General Medical Sciences

National Cancer Institute

Pew Charitable Trusts

Government of Thailand

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3