Affiliation:
1. Department of Biomedical and Clinical Sciences, Linköping University
2. Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology
Abstract
The KV7.4 and KV7.5 subtypes of voltage-gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate KV7.4 and KV7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human KV7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hKV7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V50 shifts. In contrast, PUFAs inhibit activation of hKV7.4 by shifting V50 toward more positive voltages. No effect on V50 of hKV7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hKV7.5 channel’s response to PUFAs is analogous to the one previously observed in hKV7.1–7.3 channels, whereas the hKV7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hKV7.4 by PUFAs.
Funder
Swedish Research Council
Swedish Society for Medical Research
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献