Transforming descending input into behavior: The organization of premotor circuits in the Drosophila Male Adult Nerve Cord connectome

Author:

Cheong Han SJ12ORCID,Eichler Katharina3ORCID,Stürner Tomke43ORCID,Asinof Samuel K1ORCID,Champion Andrew S34ORCID,Marin Elizabeth C3ORCID,Oram Tess B1,Sumathipala Marissa1,Venkatasubramanian Lalanti43ORCID,Namiki Shigehiro5ORCID,Siwanowicz Igor1ORCID,Costa Marta3ORCID,Berg Stuart1ORCID, ,Jefferis Gregory SXE43ORCID,Card Gwyneth M12ORCID

Affiliation:

1. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn,

2. Zuckerman Institute, Columbia University

3. Drosophila Connectomics Group, Department of Zoology, University of Cambridge

4. Neurobiology Division, MRC Laboratory of Molecular Biology

5. Research Center for Advanced Science and Technology, University of Tokyo

Abstract

In most animals, a relatively small number of descending neurons (DNs) connect higher brain centers in the animal’s head to circuits and motor neurons (MNs) in the nerve cord of the animal’s body that effect movement of the limbs. To understand how brain signals generate behavior, it is critical to understand how these descending pathways are organized onto the body MNs. In the fly, Drosophila melanogaster , MNs controlling muscles in the leg, wing, and other motor systems reside in a ventral nerve cord (VNC), analogous to the mammalian spinal cord. In companion papers, we introduced a densely-reconstructed connectome of the Drosophila Male Adult Nerve Cord (MANC, Takemura et al., 2023), including cell type and developmental lineage annotation (Marin et al., 2023), which provides complete VNC connectivity at synaptic resolution. Here, we present a first look at the organization of the VNC networks connecting DNs to MNs based on this new connectome information. We proofread and curated all DNs and MNs to ensure accuracy and reliability, then systematically matched DN axon terminals and MN dendrites with light microscopy data to link their VNC morphology with their brain inputs or muscle targets. We report both broad organizational patterns of the entire network and fine-scale analysis of selected circuits of interest. We discover that direct DN-MN connections are infrequent and identify communities of intrinsic neurons linked to control of different motor systems, including putative ventral circuits for walking, dorsal circuits for flight steering and power generation, and intermediate circuits in the lower tectulum for coordinated action of wings and legs. Our analysis generates hypotheses for future functional experiments and, together with the MANC connectome, empowers others to investigate these and other circuits of the Drosophila ventral nerve cord in richer mechanistic detail.

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping the fly nerve cord;eLife;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3