Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress

Author:

Dar Showkat A.1ORCID,Malla Sulochan1ORCID,Martinek Vlastimil123ORCID,Payea Matthew J.1ORCID,Lee Christopher T.ORCID,Martin Jessica1ORCID,Khandeshi Aditya J.1,Martindale Jennifer L.1ORCID,Belair Cedric1ORCID,Maragkakis Manolis1ORCID

Affiliation:

1. Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health

2. Central European Institute of Technology, Masaryk University

3. National Centre for Biomolecular Research, Faculty of Science, Masaryk University

Abstract

Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5’ end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5’ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on removal of the poly(A) tail. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome. Inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 fully rescues RNA length and suppresses stress-induced decay. Our findings reveal RNA decay as a key determinant of RNA metabolism upon cellular stress and dependent on stress-granule formation.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3