HiExM: high-throughput expansion microscopy enables scalable super-resolution imaging

Author:

Day John H.1,Della Santina Catherine Marin1,Maretich Pema2,Auld Alexander L.2,Schnieder Kirsten K.2,Shin Tay3,Boyden Edward S.13456,Boyer Laurie A.127

Affiliation:

1. Department of Biological Engineering, Massachusetts Institute of Technology

2. Department of Biology, Massachusetts Institute of Technology

3. Department of Media Arts and Sciences, Massachusetts Institute of Technology

4. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

5. McGovern Institute, Massachusetts Institute of Technology

6. Howard Hughes Medical Institute, Massachusetts Institute of Technology

7. Koch Institute, Massachusetts Institute of Technology

Abstract

Expansion microscopy (ExM) enables nanoscale imaging using a standard confocal microscope through the physical, isotropic expansion of fixed immunolabeled specimens. ExM is widely employed to image proteins, nucleic acids, and lipid membranes in single cells at nanoscale resolution; however, current methods cannot be performed in multi-well cell culture plates which limits the number of samples that can be processed simultaneously. We developed High-throughput Expansion Microscopy (HiExM), a robust platform that enables expansion microscopy of cells cultured in a standard 96-well plate. Our method enables consistent ∼4.2x expansion within individual wells, across multiple wells, and between plates processed in parallel. We also demonstrate that HiExM can be combined with high-throughput confocal imaging platforms greatly improve the ease and scalability of image acquisition. As an example, we analyzed the effects of doxorubicin, a known cardiotoxic agent, in human cardiomyocytes (CMs) based on Hoechst signal intensity. We show a dose dependent effect on nuclear chromatin that is not observed in unexpanded CMs, suggesting that HiExM improves the detection of cellular phenotypes in response to drug treatment. Our method broadens the application of ExM as a tool for scalable super-resolution imaging in biological research applications.Expansion microscopy (ExM) is a flexible, highly accessible, and widely implemented technique for super-resolution imaging of fixed biological specimens. For many ExM users, slide-based sample preparation and manual imaging limit the total volume of data generated and the number of conditions that are tested in parallel. In this work, we develop a simple and inexpensive device that allows the user to perform ExM within the wells of a 96-well plate. We show that samples prepared with our workflow can be imaged with a high-throughput autonomous confocal microscope, allowing for scalable super-resolution image acquisition. Our device retains the accessibility of ExM while extending the application space of ExM to problems that require the analysis of many conditions, treatments, and time points.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3