Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior

Author:

Chin Jacqueline SR12,Ellis Shane R3,Pham Huong T3,Blanksby Stephen J3,Mori Kenji4,Koh Qi Ling1,Etges William J5,Yew Joanne Y12

Affiliation:

1. Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore

2. Department of Biological Sciences, National University of Singapore, Singapore, Singapore

3. ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Wollongong, Wollongong, Australia

4. Photosensitive Materials Research Center, Toyo Gosei Company, Ltd., Chiba, Japan

5. Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, United States

Abstract

Pheromones play an important role in the behavior, ecology, and evolution of many organisms. The structure of many insect pheromones typically consists of a hydrocarbon backbone, occasionally modified with various functional oxygen groups. Here we show that sex-specific triacylclyerides (TAGs) are broadly conserved across the subgenus Drosophila in 11 species and represent a novel class of pheromones that has been largely overlooked. In desert-adapted drosophilids, 13 different TAGs are secreted exclusively by males from the ejaculatory bulb, transferred to females during mating, and function synergistically to inhibit courtship from other males. Sex-specific TAGs are comprised of at least one short branched tiglic acid and a long linear fatty acyl component, an unusual structural motif that has not been reported before in other natural products. The diversification of chemical cues used by desert-adapted Drosophila as pheromones may be related to their specialized diet of fermenting cacti.

Funder

Australian Research Council

Singapore National Research Foundation

Alexander von Humboldt Foundation

National Science Foundation

National Research Foundation-Prime Minister's office, Republic of Singapore

Alexander von Humboldt-Stiftung

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3