Transcription inhibition by the depsipeptide antibiotic salinamide A

Author:

Degen David1,Feng Yu1,Zhang Yu1,Ebright Katherine Y1,Ebright Yon W1,Gigliotti Matthew1,Vahedian-Movahed Hanif1,Mandal Sukhendu1,Talaue Meliza2,Connell Nancy2,Arnold Eddy3,Fenical William4,Ebright Richard H1

Affiliation:

1. Waksman Institute, Rutgers University, Piscataway, United States

2. Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States

3. Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States

4. Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States

Abstract

We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center ‘bridge-helix cap’ comprising the ‘bridge-helix N-terminal hinge’, ‘F-loop’, and ‘link region’. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.

Funder

National Institutes of Health

Howard Hughes Medical Institute

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference91 articles.

1. PHENIX: a comprehensive Python-based system for macromolecular structure;Adams;Acta Crystallographica Section D, Biological Crystallography,2010

2. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals;Artsimovitch;Proceedings of the National Academy of Science of the United States of America,2000

3. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition;Artsimovitch;Science,2003

4. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1;Bae;Proceedings of the National Academy of Sciences of the United States of America,2013

5. Haemophilus test medium versus Mueller-Hinton broth with lysed horse blood for antimicrobial susceptibility testing of four bacterial species;Barry;European Journal of Clinical Microbiology & Infectious Diseases,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3